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Abstract
We consider a constrained shortest path problem with the possibility to refill the resource at
certain nodes. This problem is motivated by routing electric vehicles with a comparatively short
cruising range due to the limited battery capacity. Thus, for longer distances the battery has to
be recharged on the way. Furthermore, electric vehicles can recuperate energy during downhill
drive. We extend the common constrained shortest path problem to arbitrary costs on edges
and we allow regaining resources at the cost of higher travel time. We show that this yields not
shortest paths but shortest walks that may contain an arbitrary number of cycles. We study
the structure of optimal solutions and develop approximation algorithms for finding short walks
under mild assumptions on charging functions. We also address a corresponding network flow
problem that generalizes these walks.
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1 Motivation

1.1 Electric Vehicles
Electric vehicles are a cornerstone towards eco-friendly mobility. Charged with renewable
energy they contribute to a responsible use of our limited resources. Compared to common
vehicles with combustion engines, there are still some disadvantages. The comparatively
short range due to the restricted battery capacity is most likely the main reason for the poor
popularization of electric vehicles up to now. Furthermore, for these cars even fast charging
of the battery lasts significantly longer than traditional refueling.

This gives rise to many interesting mathematical questions concerning the routing of
electric vehicles. First of all, electric vehicles can recuperate energy during downhill drive,
i.e., there are road segments where energy consumption is negative. This also implies that
for deciding whether a given path is feasible the remaining energy supply has to be checked
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30 Routing of Electric Vehicles

en route. Obviously, it must never be less than zero, but we also must not store more energy
than the battery can hold in every point in time. Thus, is it possible to reach the destination?
When no such path through the network can be found, battery charging stations have to be
visited. But where should one charge the battery, especially when different charging stations
provide different charging characteristics, e.g., rather slow charging at home compared to
fast charging or even battery swapping at professional charging stations. How much energy
should be regained at a certain charging station when charging costs (in time equivalents)
are not proportional to the charged amount as the charge rate typically decreases at higher
charge levels? All in all, which is the fastest feasible route to the destination?

There are also several fields of application for fleets of electric vehicles in commerce and
industry. Exemplary, electric automated guided vehicles (agv) are operated in harbor termin-
als, manufacturing facilities or warehouses to move materials or containers around. Whereas
reachability is of minor interest, charging all those vehicles may require a sophisticated
planning. Thus, also the network flow version of the electric vehicle routing with limited
charging capacity is worth studying.

1.2 Related Work
In the constrained shortest path problem (CSP), we are given a graph G = (V,E) with a
cost function c : E → R and lengths or resources ri : E → R. In general, costs and resources
are assumed to be non-negative. Now, one seeks for a shortest path P from a vertex s to a
vertex t which obeys the resource constraints Ri, i ∈ N = {1, . . . , k}. That is, we want to
find an s-t-path P minimizing

∑
e∈P c(e) such that

∑
e∈P ri ≤ Ri ∀i ∈ N .

For unit edge lengths, i.e., there is only one resource with r(e) = 1 for all edges, this
problem can be solved easily using a labeling algorithm. In other words, we want to find a
shortest path using at most R edges. The easiest way to solve this problem is a modified
Bellman-Ford-algorithm which stops after R iterations. Here, it is important to update the
labels simultaneously which automatically yields paths with no more than R edges.

The problem becomes NP-complete when the resource function can take arbitrary non-
negative values. This can be seen by a reduction of 2-Partition [10]. Thus, approaches
focussing on listing all Pareto-optimal solutions via dynamic programming suffer from
pseudopolynomial running times. Fortunately, several fully polynomial time approximation
schemes (FPTAS) have been found to tackle this problem. Approaches based on rounding and
scaling were suggested by Warburton [22] who used this technique to compute Pareto-optimal
solutions for the multiple-objective shortest path problem. Hassin [13] adapted and improved
this concept for constrained shortest paths. Shortly after, Phillips [18] presented an FPTAS
which uses a Dijkstra search in a resource-expanded graph. In a second line of research,
multi-phase algorithms were purposed. Most commonly, good lower and upper bounds are
computed in a first phase and the remaining gap is closed in a second phase. Handler
and Zang [12] used a Lagrange relaxation of an edge-based integer linear programming
formulation to compute the lower and upper bounds. In the second phase, the gap is closed
with help of a k-shortest path algorithm. Similarly, Beasley and Christofides [5] closed the
gap with a branch and bound strategy. Another approach was proposed by Mehlhorn and
Ziegelmann [15, 23]. They use the dual of a relaxed path-based integer linear programming
formulation for the first phase. There, the separation problem can be solved efficiently which
is used to compute the lower and upper bounds. For the second phase, additional approaches
like path ranking and labeling strategies are discussed to close the duality gap.

A flow version of the constrained shortest path problem dates back to 1978, when Lovász
et al. [14] derived a version of Menger’s theorem for node-disjoint length bounded paths. This
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was independently extended to edge-disjoint paths by Exoo [7] and Niepel and Šafaříková [17].
Edge-disjoint paths can be interpreted as a 0-1-valued flow with unit capacity and unit edge
length. Recently, a more general approach with fractional flow values was studied by Baier
et al. [1, 2]. Such a flow is feasible if and only if there exists a path decomposition such that
each flow carrying path fulfills the resource constraint. However, the authors of [1, 2] show
that it is NP-complete to decide whether a given edge-flow can be decomposed into such
paths. Consequently, deciding whether there is a length-bounded flow of a certain value is
also an NP-complete problem. The authors present a fully polynomial time approximation
scheme based on an approximation algorithm for constrained shortest paths. Furthermore,
the authors show that the ratio of the minimum fractional length-bounded s-t-cut, i.e., edges
can be chosen partially, and the minimum integral s-t-cut can be of order Ω(

√
n) even for

unit resources. This bound carries over to the gap between fractional and integral flow.
The routing of electric vehicles has been studied to a lesser extent in the literature. In [19]

the authors cope with negative resource consumption due to recuperation by taking the
potential energy into account. Thus, a new non-negative cost function is determined such
that an A* algorithm can be applied to compute paths with minimum energy consumption.
Baum et al. [4] present a very fast routing algorithm for electric vehicles by extending the
customizable route planning approach of [6]. Additionally, they consider reducing speed to
increase range in a subsequent paper [3]. However, recharging at charging stations is not
considered in these papers. Recently, a constrained shortest path problem for electric vehicles
with recharging stations was introduced by Storandt [20]. In this setting, it is assumed
that the whole battery is swapped at each charging point. Thus, recharge time is constant
and the battery is always recharged to full capacity after each visit of a charging station.
Consequently, first results were also obtained for the facility location problem for charging
stations [21].

1.3 Our Contribution
In this paper, we extend previous results for resource constrained shortest paths and flows to
networks with recharging nodes. Due to recuperation, negative resource consumption is now
possible. Further, we consider recharging nodes where the resource can be refilled by paying
additional costs.

The paper is organized as follows. Firstly, we give some definitions and fix the notation.
Afterwards, we will show that in our setting shortest paths can contain cycles and even a
node for charging can be visited more than once. Therefore, we also introduce a new type of
conservative cost functions in order to avoid one class of cycles. In Section 4, we develop
an FPTAS for the shortest path problem with charging. Furthermore, we address the flow
variant of this problem, i.e., we present analytic results for the min cost flow problem with
length constraints and recharging in Section 5.

2 Preliminaries

Throughout this paper the underlying structure is a finite directed graph G = (V,E) with
n = |V | vertices or nodes and m = |E| edges. Given a source vertex s and a target vertex
t, an s-t-path P is a sequence of edges (e1 = (s, v1), . . . , ek = (vk−1, t)) fitting head to tail
and each edge appears only once. However, as we will show, paths are too restrictive for
finding the most efficient route from s to t. An s-t-walk W is again a sequence of edges
(e1 = (s, v1), . . . , ek = (vk−1, t)), but each edge may appear more than once. A cycle C is a
special kind of walk, where the first node is equal to the last one.

ATMOS’15
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In general, one may allow of several resources, but here we limit our study to a cost
function and a single resource constraint. For each edge e ∈ E, there are two parameters,
namely cost c : E → R≥0 and resource consumption r : E → R. Since costs are related to
travel time in most of our applications, we assume the cost function to be non-negative. In
contrast, we explicitly allow recuperation of energy. Thus, there may be edges with negative
resource consumption. Of course, in accordance to basic laws of physics it is assumed that
the total energy consumption on a cycle is non-negative.

I Definition 1. A resource function r is called conservative if for each cycle C there is∑
e∈C

r(e) ≥ 0.

In the following we require the resource function to be conservative. With our application
in mind, we refer to a node as charging node if at this node the resource value of a path can
be increased at the expense of the cost value . Furthermore, our main application requires
the ability to model a non-linear charging process. We describe this charging process with
help of a charging function f : R≥0 → R≥0 which is continuous and increasing and maps
from the amount of recharged resources to the resulting costs.

I Definition 2. For a subset S ⊆ V of charging nodes, the charging function fv : R≥0 → R≥0,
v ∈ S, is a continuous and increasing function. If the path P arrives at vertex v ∈ S with
x units of remaining resources we recharge µ resources which increase the cost of P by
fv(x+ µ)− fv(x).

This definition via the charging function has two advantages. Bypassing a charging node,
that is µ = 0, causes no additional cost. Further, there is also no need to interrupt the charging
process, since fv(x+(µ1 +µ2))−fv(x) = (fv(x+µ1)−fv(x))+(fv(x+µ1 +µ2)−fv(x+µ1)).
That is, we can assume that the desired amount of resources is recharged in one step. However,
this does not prevent the optimal walk to visit a charging node v ∈ S twice as we will show
in Section 3.

I Definition 3. An s-t-walk W with charging is a sequence of tuples (ei, µi), i ∈ {1, . . . , k}
with edges ei = (vi−1, vi) and recharged resources µi ≥ 0 at vi such that the edges form an
s-t-walk. Furthermore, we require vi ∈ S if µi > 0.

Contrary to constrained shortest paths, it is not sufficient to check the resource constraint
only at the target terminal. Due to negative resource consumption on some edges, feasibility
has to be checked at each intermediate point, too. Let us assume an initial resource value of
R at node s and a lower bound of 0. Furthermore, let R be the maximum amount of storable
resources. However, this upper bound is a soft bound. We will not violate it by recharging,
since this will cause additional costs. If we would exceed this bound by recuperation, excess
resources is not stored.

Let r(W, j) be the remaining resources on walk W after the jth edge and after charging
µj units of resources at node vj . Starting with r(W, 0) = R we define iteratively:

r(W, j) := min{R, r(W, j − 1)− r(ej) + µj}.

I Definition 4. Given initial resources R and resource bound R, a walk W with charging is
feasible iff r(W, j)− µj ≥ 0 for all j ∈ {1, . . . , kW }.

Now, the cost of a walk W with charging is defined by

c(W ) =
k∑
j=1

c(ej) +
k∑

j=1, µj>0
fvj (r(W, j))− fvj (r(W, j)− µj) .
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Figure 1 Network with common nodes (circle) and charging nodes (boxed). Edge labels denote
(cost, resource consumption). Initial resources and maximum storage are R = R = k + 2. Charging
is instantaneous/free, i.e., f ≡ 0 for all charging nodes, until reaching R.

That is, the costs of a walk consist of costs for crossing the edges and of costs for recharging
resources. Note that r(W, j) already includes charging at the head of ej , so resources are
refilled from r(W, j) − µj up to r(W, j). Let r(W ) = R − r(W,kW ) be the total resource
difference of the walk W with kW edges. A walk W1 with charging is dominating a walk W2
iff c(W1) < c(W2) and r(W1) ≤ r(W2) or c(W1) ≤ c(W2) and r(W1) < r(W2). Hence, a walk
W1 with charging is Pareto-optimal if there exists no walk W2 which dominates W1. A walk
W1 with charging is a shortest walk, if there is no other feasible walk W2 with c(W2) < c(W1).

3 Structure of Optimal Solutions

From an algorithmic point of view, the problem of deciding whether there is a walk with
charging of cost ≤ c is clearly NP-complete. On the one hand it is a decision problem
and a walk given as certificate is easy to check, on the other hand the problem includes
the constrained shortest path problem. Yet, in some sense it is also not harder than the
constrained shortest path problem if we require an additional property of the network and its
charging functions. We will derive this property in this section and we present a corresponding
FPTAS in the next section.

However, the problem of finding shortest walks with charging has a richer combinatorial
variety. In this section, we will also emphasize some of the most important properties of such
walks. First of all, an optimal walk may contain cycles despite the positive cost function and
the conservative resource consumption function.

I Lemma 5. A shortest walk with charging may contain arbitrarily many cycles even when
no charging costs exist. There are networks where an optimal walk passes a certain edge
Ω(n)-times.

Proof. Consider the network in Figure 1. Charging node vj , j = 1, . . . , k − 1 is reachable
from charging nodes vi with i ≥ j − 1. Node vj is only reachable from node vj−1 if the
resources are completely recharged in vj−1. Further, t is only reachable from vk−1. Thus,
even the shortest walk has to visit all charging nodes. Edge (u,w) is used k-times. J

The construction in Figure 1 may lead to the assumption that a shortest walk visits
charging nodes at most once. However, this is not true.

I Lemma 6. A shortest walk with charging can visit a single charging node several times.
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Figure 2 Network with two charging nodes. Charging is very expensive at u, that is fu(x) = x.

Charging at w is very fast/free, i.e., fw(x) = 0. Even in this simple instance with linear charging
functions, u is visited twice by the optimal path.

Proof. Again, we provide an example in Figure 2. Assume R = R = 1. A walk starting
in s may only reach v and u subsequently. From u, target t can only be reached by a full
recharge µu = 1. With fu(x) = x, this also induces costs of 1. For small ε > 0, it is better to
refill only 3ε. Then, w can be reached where completely charging is free. However, t is not
reachable from w without visiting u and recharging 3ε again. Thus, if ε < 1

6 , the shortest
path visits u twice. J

More than two visits of a charging node can easily be achieved by choosing the charging
functions properly. Instead of a single free recharge node w as in Figure 2, assume several
charging nodes wi each providing free recharge only for a small subset of the domain of the
charging functions and very high fees otherwise. Then, a shortest path can visit u several
times. Actually, it is also possible to choose the charging function of two stations so that an
optimal path would have to switch infinitely often between these two stations.

However, the network in the proof of Lemma 6 presumes somewhat unnatural charging
functions. To prevent such unnatural walks, we introduce an additional constraint similar to
the restrictions of conservative cost functions to prevent negative cost cycles.

I Definition 7. Let C be a cycle, let SC = S ∩ V (C) be charging nodes on C, and let
v ∈ SC be one of these nodes. Let WC be the cyclic walk with charging, starting at node
v with r(W, 0) = R resources, using edges ej , j = 1, . . . , k of C with arbitrarily recharged
resources µj , and ending in node v. The cost of this walk is c(WC). Then, C is called a
regenerating cycle iff there is a choice of recharged resources µj such that r(W,k) > r(W, 0)
and c(WC) < fv(r(W,k))− fv(r(W, 0)).

In other words, requiring a network without regenerating cycles implies that is always
cheaper to recharge at a charging node immediately, instead of taking detours for recharging
and coming back. Without charging, this definition would be equivalent to the definition
of conservative resource functions. In accordance, we call the resource function and the
charging functions strictly conservative if no regenerating cycles occur in the network.

Checking for such cycles is a difficult problem since there is an exponential number of
cycles generally. Assuming non-linear charging functions, it is already NP-hard to compute
the optimal µi at each charging node on a single cycle since we may have to deal with a
nonconvex nonlinear programming problem [16].

I Theorem 8. In a network without regenerating cycles a shortest walk visits a charging
node at most once.
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Figure 3 Assume R = R = 2. Hence, an s-t-walk has to visit u for recharging. Obviously, the
s-v-subwalk is not an optimal s-v-walk, since v can be reached directly from s with lower costs.

Proof. Definition 7 implies that visiting a charging node twice always causes additional costs
(compared to charging at this node directly) or a loss of resources compared to the first
visit. J

Please note that regenerating cycles are created by an interplay of resource functions and
charging functions. Even in a network where all charging functions are identical, regenerating
cycles may occur. Furthermore, identical charging functions do not imply either that it is
optimal to completely charge the battery when a charging node is visited. Still, a path that
visits several charging nodes and recharges small amounts of µi may be better than a path
visiting fewer charging stations.

Finally, as shown next walks with charging do not have the shortest subwalk property.

I Lemma 9. An s-v-subwalk of a shortest s-t-walk with charging is not necessarily a shortest
s-v-walk.

Proof. Figure 3 provides an instance without the subwalk property. Same claim also holds
for constrained shortest paths and CSP is a subproblem of our problem. J

At first sight, the results in this section may seem of academic interest only. But charging
functions for electric vehicles are non-linear. Consequently, such effects cannot be generally
excluded in practice. Hence, each algorithm designed for this problem should be prepared to
cope with cycles or one has to provide appropriate restrictions that are consistent with the
corresponding application.

4 Approximating Constrained Shortest Walks with Charging

We will now develop an FPTAS for the constrained shortest walk problem with charging
nodes. This will consist of two steps. Firstly, we construct an FPTAS for the common
constrained shortest path problem but with conservative resource consumption and without
charging at intermediate nodes. Secondly, we use a slightly modified version of the first
algorithm as a sub-routine in an FPTAS connecting charging nodes in a network without
regenerating cycles.

4.1 The Inner Approximation Algorithm
The inner approximation algorithm picks up the main idea of Hassin’s approach, namely
scaling and rounding [13], but we make some important changes to cope with negative
resource consumption.

Let us fix two terminal nodes ŝ and t̂. Furthermore, we are given initial resources R̂
and upper bound R, a non-negative cost function c : E → R≥0, and a conservative resource
consumption r : E → R. In this inner approximation we do not consider recharging, i.e.,
there are no charging nodes. In consequence, no cycles can occur in an optimal path. Now,
we want to find an ε̂-approximation of the shortest s-t-path with respect to the cost function
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36 Routing of Electric Vehicles

c obeying the resource constraints. In other words, we want to find a feasible path that has
cost at most (1 + ε̂)-times higher than the optimal path.

To record information about subpaths, we provide a set of labels at each node. Each label
consists of two values (c, r) of costs and remaining resources. Feasibility is crucial, hence,
resource consumption has to be calculated exactly. Consequently, we can only round the
cost values in the approximation algorithm. Here, the main difficulty is to find a suitable
precision for rounding. On the one hand, the number of different values has to be bounded
polynomially. On the other hand, we have to meet the approximation factor 1 + ε̂.

Suppose that we would know the value OPT of the objective function of an optimal
solution already. In this case, we can round up all cost values on the edges to integral
multiples of ε̂OPT

|V |−1 . Since the optimal path has at most |V | − 1 edges, and the error on each
edge is at most ε̂OPT

|V |−1 , the total error of the path is at most ε̂OPT. If we round the cost
values with this precision, we also get only integer multiples of ε̂OPT

|V |−1 as possible cost values
for subpaths at each node. Since the length OPT of an optimal path is known and costs
are non-negative, it suffices to record cost values up to this bound (1 + ε̂) OPT. Thus, we
have at most (|V |−1)(1+ε̂)

ε̂ different cost values that can occur at a node. Of course, for each
node v we only store the set Q(v) of Pareto-optimal labels, i.e., the highest battery charge
achieved so far for each of the possible cost values.

To find a path of the desired length, we initially label node ŝ with Q(ŝ) = {(0, R̂)}. All
other label sets Q(v) are initially empty. In an update step, we propagate the whole label set
of each node u to all its neighbors v. Each label in Q(u) is updated using cost and resource
consumption of e = (u, v) and added to the label set Q(v) accordingly. Labels with cost
values higher than (1 + ε̂) OPT are discarded, they can never contribute to a path with the
desired properties. Since an optimal path can consist of at most |V | − 1 edges, precisely this
number of update rounds suffices to find an optimal ŝ-t̂-path according to Bellman-Ford’s
algorithm. Setting pointers for each label pointing to the predecessor node, the path itself
can easily be reconstructed.

Thus, given a value OPT, we can check whether there is a feasible ŝ-t̂-path of length at
most (1 + ε̂) OPT in time polynomial in |V | and 1

ε̂ . However, the OPT value is unknown at
the beginning, so we apply binary search to find it. Let LB be the cost of a shortest path
without considering the resource constraints. Thus, LB is a lower bound on OPT. Further,
compute a shortest path with respect to resource consumption. Since resource consumption
is conservative, one may use Bellman-Ford’s algorithm. Obviously, the cost UB of this path
is an upper bound on OPT. Our first guess on OPT is OPT =

√
LB ·UB, i.e., we use a

logarithmic scale.

If we find a feasible path with length smaller than OPT, we can use this length as a new
upper bound UB. If we cannot find a path of length at most (1 + ε̂)OPT, we can use OPT as
a new lower bound LB. OPT is updated accordingly and the binary search is stopped when
UB
LB is smaller than a pre-defined constant k, e.g., k = 2. Now, we execute a final run with
rounding precision ε̂LB

|V |−1 and maximum cost value UB. In other words, we use the precision
given by the lower bound LB, but we use k-times as many labels to cover paths of length
UB.

Summarizing, Algorithm 1 is a very short description of the inner approximation.
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Algorithm 1 Inner Approximation.
1: Input: Graph G = (V, E) with c, r and ε̂, nodes ŝ and t̂, Q(ŝ) = {(0, R̂)}
2: Output: ŝ-t̂-path with cost ≤ (1 + ε̂) OPT
3: compute LB, and UB, and OPT
4: while UB

LB > 2 do
5: initialize Q, round c
6: for i = 1, . . . , |V | − 1 do
7: for all nodes v ∈ V do
8: propagate Q(v) to all neighbors
9: end for
10: end for
11: update LB or UB, and OPT
12: end while
13: execute final run with double precision
14: if Q(t̂) 6= ∅ then
15: reconstruct ŝ-t̂-path, return Q(t̂)
16: else
17: no such path exists
18: end if

4.2 The Outer Approximation Algorithm
Whereas the inner approximation can be used for calculating costs and battery consumption
between charging nodes, the outer approximation combines these paths between charging
stations to create a walk from start node s to target node t.

The network for this algorithm consists only of the charging nodes S and any two nodes
of S are connected if there is a feasible path between them in the original graph. However,
reachability and the cost thereof depend on the initial battery charge. Thus, it is not possible
to compute this reachability graph a priori. Instead, the cost for going from one charging
node to another has to be computed just when needed.

Let (1 + ε) be the accuracy of the outer approximation, we again determine the optimal
rounding precision via a binary search on the optimal value OPTouter as described in
Section 4.1. Only nodes v ∈ S ∪ {s, t} are labeled, initially all label sets are empty but
Q(s) = {(0, R)}. To propagate a label from u ∈ S ∪ {s} to w ∈ S ∪ {t}, we call the inner
approximation with ŝ = u, t̂ = w, and Q(ŝ) = Q(u).

In contrast to the pure inner approximation described above, we can omit the inner
binary search by using the OPTouter value from the outer binary search and by setting
ε̂ = ε

|S+1| . Thus, we also compute paths with higher costs but less consumption which match
the required accuracy of the outer approximation. Note that this may lead to a poor actual
approximation of the subpath. Especially if the subpath is very short, then an error of
ε̂OPTouter can be much larger than ε̂OPT. However, this relative error on subpaths does
not matter as long as the total error of all subpaths is bounded.

Now, one has the option to charge the battery in node w. We use the return value Q(t̂)
of the inner approximation (where t̂ = w) and calculate all possible battery charges that
match the cost discretization. Let fw be the charging function at w, (ĉ, r̂) ∈ Q(t̂) and α

the rounding precision of the outer approximation. We determine all values of x such that
0 ≤ f(r̂ + x) − f(r̂) + ĉ = kα ≤ (1 + ε) OPTouter with k ∈ N. Each label (ĉ, r̂) of Q(w) is
shifted by all those values and is added to Q(w) forming a new Pareto-optimal label set.
Here, it is assumed implicitly that all operations concerning the computation of f can be
done in polynomial time.

Since the resource function r is assumed to be strictly conservative, each charging node
is visited at most once. We may also apply Bellman-Ford’s principle here. Propagating
the label set of each u ∈ S ∪ {s} to any other w ∈ S ∪ {t} in |S| + 1 rounds creates a
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Algorithm 2 Outer Approximation.
1: Input: Graph G = (V, E) with S ⊆ V , c, r and ε, nodes s and t, R
2: Output: s-t-path not longer than (1 + ε) OPT
3: compute LB, and UB, and OPT
4: while UB

LB > 2 do
5: initialize Q, Q(s) = {(0, R)}, round c
6: for i = 1, . . . , |S| − 1 do
7: for all nodes u ∈ V ∪ {s} do
8: for all nodes w ∈ V ∪ {t} do
9: determine Pareto-optimal u-w-paths with maximum cost OPTouter

and precision ε̂ = ε
|S+1| , and initial label set Q(u)

10: apply recharging in w
11: update Q(w)
12: end for
13: end for
14: end for
15: update LB or UB, and OPT
16: end while
17: if Q(t) 6= ∅ then
18: reconstruct s-t-path, return Q(t̂)
19: else
20: no such path exists
21: end if

correct label at t. Since we use at most |S|+ 1 subpath and each subpath has at most error
ε̂OPT = ε

|S+1| OPT, the total error is less than εOPT.
Thus, in a very condensed form Algorithm 2 states the outer approximation scheme.
The outer approximation runs in time polynomial in |S| and ε and the number of function

calls to the inner approximation is also bounded polynomially. Due to the finer precision
ε̂ = ε

|S+1| , the running time of the inner algorithm is increased by at most O(n) but the inner
binary search is not needed. Please note that a feasible path for determining UB can be
easily found by applying a full recharge at each charging node and checking reachability only
for maximal resources. Due to space constraints, we have to omit a more detailed analysis
but refer the reader to the journal version of this paper.

5 Flows with Recharging

Finally, we study the network flow version of constrained shortest paths in a network
with charging nodes. In this setting, we are looking for a network flow that has a path
decomposition such that each path is feasible with respect to the resource consumption.
Hence, the constrained shortest path problem can be seen as a sub-problem. For example,
the flow is zero iff no feasible path exists. Consequently, the flow problem is at least as
difficult as the path problem.

We look at the unweighted version of this problem, here. That means, we only have
capacities u : E → R≥0 and resource consumption but no costs on the edges. The capacities
limit the maximal flow on each edge. We also change the interpretation of charging nodes.
A charging node now also has a capacity c : S → R≥0 ∪ {+∞} which states the maximum
amount of resources that can be provided for charging. One may also use a different kind of
charging function to capture different efficiency factors during charging, i.e., the charging
station has to expend more energy than arrives in the battery. In practice, this difference
depends on the charge level of the battery. For simplicity, we assume a linear relation in this
paper.

As seen in Section 3, cycles may occur. Since walks are the main actors, we use a walk
based flow definition. Here, the parameter λe(K) counts the number of occurrences of edge
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e in a walk K. Further, Ks,t denotes the set of all possible s-t-walks. Note that due to the
walk based formulation flow conservation is automatically implied.

I Definition 10. An s-t-flow in this setting is a function f : Ks,t → R≥0 assigning a flow
value fK to each s-t-walk K in G. The sum

∑
K∈Ks,t

fK is called the s-t-flow value of f .
The flow f is feasible if it respects edge capacities, i.e.,∑

K∈Ks,t:e∈K
λe(K)fK ≤ ue ∀e ∈ E.

Given initial resources R and resource bound R, a resource constrained s-t-flow with charging
is an s-t-flow, where every walk K with f(K) > 0 is a feasible s-t walk with charging with
respect to R and R.

An s-t-walk K with charging that charges µ units at node v ∈ S and which is used by
f(K) flow units uses f(K)µ units of the capacity c(v).

I Definition 11. An s-t-flow with charging is feasible, if the underlying s-t-flow is feasible
and all walks with f(K) > 0 charge in total at most c(v) units in node v for all v ∈ S.

I Definition 12. Given initial resources R and resource bound R, an s-t-cut with charging is
a set of edges E′ ⊆ E such that there is no feasible s-t-walk with charging in G = (V,E\E′).
The accumulated capacity of the edges in E′ is called the cut value of E′.

Now, we consider maximum s-t-flows with charging, that is, flows where the flow value is
maximum among all feasible s-t-flows with charging. Even in such maximum flows it can be
necessary that some path visits a certain charging node more than once.

I Corollary 13. There are instances of the maximum s-t-flows with charging problem, where
a path contributing to a maximum s-t-flow with charging has to visit a charging node more
than once.

Proof. Consider the network in Figure 2. Let all edge capacities and c(w) be infinite. Hence,
the flow is only restricted by c(u). If we visit node u only once, there is only one feasible
path and at most c(u)

R
units can be sent from s to t. If we recharge 3ε per flow unit, visit

node w for a full recharge, and go back to u for another charge of 3ε, we can send c(u)
6ε units

from s to t. Thus, if we choose ε < R
6 , the claim follows. J

But even without limiting rechargeable resources, i.e., c(v) = +∞ for all v ∈ S, flows
with recharging significantly differ from common network flows. The network in Figure 1
implies two more corollaries for resource constrained flow with charging.

I Corollary 14. The gap between the flow value and the cut value of resource constrained
flow in a network with charging nodes and unlimited supply at charging nodes can be of order
Ω(n), even for planar networks with unit capacities.

Proof. Add unit capacities to the graph in Figure 1. Since there is only one feasible path,
and this path uses one edge Ω(n)-times, the claim follows. J

I Corollary 15. The gap between resource constrained fractional flow and integral flow with
charging in a network with unlimited supply in charging nodes is unbounded.

Furthermore, there exist networks that do not allow for an integral flow greater than
zero despite all capacities being integral. Nevertheless, the total fractional flow value can be
integral and positive in those networks.

ATMOS’15
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Proof. Figure 1 with unit capacities provides an instance where no positive integral flow is
possible. Using several copies of this network in a parallel manner and scaling capacities
would allow a fractional flow of value 1. J

6 Discussion

In this paper, we studied shortest paths and flows in a resource constrained setting where it is
possible to refill resources at some nodes. We considered charging costs which depend on the
charged amount. Thus, finding good paths is not only a question of reachability, but we have
also to decide where and how much to charge. This additional combinatorial variety makes
the problem significantly more difficult. Thinking of applications like routing of electric
vehicles it seems very challenging to run an FPTAS on an onboard unit in admissible time.

This suggests further research into two directions. On the one hand, one may work
on alternative approximation algorithms, e.g., based on routing algorithms in a condensed
resource-expanded network (cf. [8]). On the other hand, the cycle constraints are crucial.
Are there other ways to control regenerating cycles? Checking consumption and charging
functions for being strictly conservative is difficult and expensive. Is it possible to perform
this check using some kind of cycle basis instead of the whole set of cycles?

One may also extend the problem. For example, one may ask for the shortest path if no
more than (1 + α) of the resources of the most resource efficient path can be spent. Further,
not only the charging functions may depend on the initial value of the battery, but also the
consumption itself may differ for full or nearly empty batteries. If this cannot be handled in
a preprocessing step which parameterizes the battery linearly, this will lead to some kind of
dynamic shortest path problem with recharging.

Another open question is the existence of an FPTAS for maximum flows with charging.
Such an FPTAS can make use of the FPTAS for s-t-walks with charging. For example, one
may try an approach like the algorithm of Garg and Könemann [11] with the extension of
Fleischer [9] to approximative shortest paths. However, one will need consistent dual cost
functions for the recharge capacities of the charging nodes. Thinking of fleets of vehicles, one
may also extend the problem to include a time component. That is, charging stations only
provide a limited number of slots for charging vehicles simultaneously. Therefore, recharging
also requires scheduling.
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